Source code for dl.helpers.cluster

"""Data Lab helpers for clustering."""

__authors__ = 'Robert Nikutta <robert.nikutta@noirlab.edu>, Data Lab <datalab@noirlab.edu>'
__version__ = '20200204' # yyyymmdd

# 3rd party
import numpy as np


[docs] def findClusters(x,y,method='MiniBatchKMeans',**kwargs): # x,y can be for instance ra,dec """Find 2D clusters from x & y data. Parameters ---------- x, y : seq (e.g. tuple,list,1-d array) Location of points in (x,y) feature space, e,g, RA & Dec, but x & y need not be spatial in nature. method : str Cluster finding method from :mod:`sklearn.cluster` to use. Default: 'MiniBatchKMeans' (a streaming implementation of KMeans), which is very fast, but not the most robust. 'DBSCAN' is much more robust, but MUCH slower. For other methods, consult :mod:`sklearn.cluster`. **kwargs Any other keyword arguments will be passed to the cluster finding method. If method='MiniBatchKMeans' or 'KMeans', n_clusters (integer number of clusters to find) must be passed, e.g. .. code-block:: python clusters = findClusters(x,y,method='MiniBatchKMeans',n_clusters=3) """ import sklearn.cluster as C #import KMeans, MiniBatchKMeans, DBSCAN if method in ('MiniBatchKMeans','KMeans'): if 'n_clusters' not in kwargs: kwargs['n_clusters'] = 3 try: METHOD = getattr(C,method)(**kwargs) except Exception as e: print (str(e)) raise X = np.matrix(zip(x,y)) clusters = METHOD.fit(X) return clusters
[docs] def constructOutlines(x,y,clusterlabels): # compute convex hull, one per cluster label """Construct the convex hull (outline) of points in (x,y) feature space, Parameters ---------- x, y : seq (e.g. tuple,list,1-d array) Location of points in (x,y) feature space (e,g, RA & Dec). Returns ------- hull : instance The convex hull of points (x,y), an instance of :class:`scipy.spatial.qhull.ConvexHull`. Example ------- Given `x` & `y` coordinates as 1d sequences: .. code-block:: python points = np.vstack((x,y)).T # make 2-d array of correct shape hull = constructOutlines(x,y) plt.plot(points[hull.vertices,0], points[hull.vertices,1], 'r-', lw=2) # plot the hull plt.plot(points[hull.vertices[0],0], points[hull.vertices[0],1], 'r-') # closing last point of the hull """ from scipy.spatial import ConvexHull points = np.vstack((x,y)).T hull = ConvexHull(points) return hull