Euclid

DescriptionData ReleasesQuick Data Release 1 (Euclid Q1)Early Release Observations (Euclid ERO)Data Access

Euclid_s_wide_and_deep_surveys.jpg Figure: Sky location of the Euclid's wide survey (blue) and deep survey (yellow) fields in the Galactic coordinates (the bright horizontal band corresponds to the plane of the Milky Way galaxy). Credit: ESA/Euclid/Euclid Consortium/NASA/Planck Collaboration/A. Mellinger – Acknowledgment: Jean-Charles Cuillandre, João Dinis and Euclid Consortium Survey Group

Description

Euclid is a space mission of the European Space Agency (ESA) with the primary goal of studying dark matter and dark energy using two main probes, weak gravitational lensing and galaxy clustering (Euclid Collaboration: Mellier et al. 2024). Euclid uses a 1.2-m diameter Korsch telescope with a field of view of 0.54 square degrees, imaged by two instruments, VIS (Euclid Collaboration: Cropper et al. 2024) and the Near-Infrared Spectrometer and Photometer (NISP; Euclid Collaboration: Jahnke et al. 2024), with the mission of conducting the Euclid Wide Survey (EWS), covering 14,000 square degrees of the extragalactic sky (Euclid Collaboration: Scaramella et al. 2022). VIS is a broad-band optical imager with a spatial resolution of 0.''18, designed to measure the distortion of galaxy shapes with Iₑ ≲ 24.5. NISP combines the capabilities of an imager in the near-infrared (NIR) bands Yₑ, Jₑ, and Hₑ (Euclid Collaboration: Schirmer et al. 2022) to derive the photometric redshifts of the galaxies whose shapes are measured with VIS, together with a near-infrared slitless spectrograph to measure accurate redshifts of galaxies with bright emission lines.

The VIS single Iₑ band is too wide to allow for the determination of the photometric redshifts of the objects whose shapes are being measured. To this end, the Euclid space data are combined with ground-based photometry in the u, g, r, i, and z bands from large-area surveys. In the southern sky, the Dark Energy Survey (DES; Abbott et al. 2021) is currently used until deeper data from the Vera C. Rubin Observatory (Ivezic et al. 2019) become available. In the northern sky, a new collaboration has been set up, the Ultraviolet Near-Infrared Optical Northern Survey (UNIONS; Gwyn et al., in prep.), with the aim to survey the sky in the ugriz bands. This is a joint effort between the Canada-France Imaging Survey (CFIS; Ibata et al. 2017) for the u and r bands, the Panchromatic Survey Telescope and Rapid Response System (Pan-STARRS; Chambers et al. 2016) for the i band, and the Subaru Hyper Suprime Camera (HSC; Miyazaki et al. 2018) for both the g band, through the Waterloo-Hawaii-IfA g-band Survey (WHIGS, PIs K. C. Chambers and M. J. Hudson), and the z band, through the Wide Imaging with Subaru-Hyper SuprimeCam Euclid Sky survey (WISHES, PI M. Oguri). In the Euclid project, we refer to these external data as 'EXT'. They are ingested and recalibrated to a flux scale in common with the VIS and NISP data. Together, the space- and ground-based data form the Euclid mission data set.

For more information about Euclid, see the Euclid website.

The euclid_q1.object table has been crossmatched against our default reference datasets within a 1.5 arcsec radius, nearest neighbor only. These tables will appear with x1p5 in their name in our table browser. Example: euclid_q1.x1p5__object__gaia_dr3__gaia_source

Back to Top

Data Releases

Quick Data Release 1 (Euclid Q1)

The first Euclid Quick Data Release, Q1, comprises 63.1 square degrees of the Euclid Deep Fields (EDFs) to nominal wide-survey depth. It encompasses visible and near-infrared space-based imaging and spectroscopic data, ground-based photometry in the u, g, r, i, and z bands, as well as corresponding masks. Overall, Q1 contains about 30 million objects in three areas near the ecliptic poles around the EDF-North and EDF-South, as well as the EDF-Fornax field in the constellation of the same name. The purpose of this data release – and its associated technical papers – is twofold. First, it is meant to inform the community of the enormous potential of the Euclid survey data, to describe what is contained in these data, and to help prepare expectations for the forthcoming first major data release DR1. Second, it enables a wide range of initial scientific projects with wide-survey Euclid data, ranging from the early Universe to the Solar System. The Q1 data were processed with early versions of the processing pipelines, which already demonstrate good performance, with numerous improvements in implementation compared to pre-launch development.

Euclid Q1 Tables
Table NameDescription
objectSource catalog
phz_photo_zContains photometric redshift and its PDF for each object
spe_classificationClassification information for processed spectra
spe_galaxy_candidatesContains up to 5 redshift candidates for each object_id classified as a galaxy
spe_qso_candidatesContains up to 5 redshift candidates for each object_id classified as a QSO
spe_qualityQuality flags for each spectrum. Flag bits described here
spe_star_candidatesContains 1 relative velocity candidate for for each object_id classified as a star

Back to Top

Note that for the euclid_q1.object table, we have excluded the aperture fluxes beyond 1 FWHM. Additionally, we have removed the following columns since they were entirely empty:

  • right_ascension_psf_fitting
  • declination_psf_fitting
  • flag_u_ext_decam
  • flag_u_ext_lsst
  • flag_g_ext_lsst
  • flag_r_ext_lsst
  • flag_i_ext_lsst
  • flag_z_ext_lsst
  • flag_g_ext_jpcam
  • flag_z_ext_panstarrs
  • flux_u_ext_decam_1fwhm_aper
  • flux_u_ext_lsst_1fwhm_aper
  • flux_g_ext_lsst_1fwhm_aper
  • flux_r_ext_lsst_1fwhm_aper
  • flux_i_ext_lsst_1fwhm_aper
  • flux_z_ext_lsst_1fwhm_aper
  • flux_g_ext_jpcam_1fwhm_aper
  • flux_z_ext_panstarrs_1fwhm_aper
  • fluxerr_u_ext_decam_1fwhm_aper
  • fluxerr_u_ext_lsst_1fwhm_aper
  • fluxerr_g_ext_lsst_1fwhm_aper
  • fluxerr_r_ext_lsst_1fwhm_aper
  • fluxerr_i_ext_lsst_1fwhm_aper
  • fluxerr_z_ext_lsst_1fwhm_aper
  • fluxerr_g_ext_jpcam_1fwhm_aper
  • fluxerr_z_ext_panstarrs_1fwhm_aper
  • flux_u_ext_decam_templfit
  • flux_u_ext_lsst_templfit
  • flux_g_ext_lsst_templfit
  • flux_r_ext_lsst_templfit
  • flux_i_ext_lsst_templfit
  • flux_z_ext_lsst_templfit
  • flux_g_ext_jpcam_templfit
  • flux_z_ext_panstarrs_templfit
  • fluxerr_u_ext_decam_templfit
  • fluxerr_u_ext_lsst_templfit
  • fluxerr_g_ext_lsst_templfit
  • fluxerr_r_ext_lsst_templfit
  • fluxerr_i_ext_lsst_templfit
  • fluxerr_z_ext_lsst_templfit
  • fluxerr_g_ext_jpcam_templfit
  • fluxerr_z_ext_panstarrs_templfit
  • flux_vis_to_u_ext_decam_templfit
  • flux_vis_to_u_ext_lsst_templfit
  • flux_vis_to_g_ext_lsst_templfit
  • flux_vis_to_r_ext_lsst_templfit
  • flux_vis_to_i_ext_lsst_templfit
  • flux_vis_to_z_ext_lsst_templfit
  • flux_vis_to_g_ext_jpcam_templfit
  • flux_vis_to_z_ext_panstarrs_templfit
  • fluxerr_vis_to_u_ext_decam_templfit
  • fluxerr_vis_to_u_ext_lsst_templfit
  • fluxerr_vis_to_g_ext_lsst_templfit
  • fluxerr_vis_to_r_ext_lsst_templfit
  • fluxerr_vis_to_i_ext_lsst_templfit
  • fluxerr_vis_to_z_ext_lsst_templfit
  • fluxerr_vis_to_g_ext_jpcam_templfit
  • fluxerr_vis_to_z_ext_panstarrs_templfit
  • flux_u_ext_decam_sersic
  • flux_u_ext_lsst_sersic
  • flux_g_ext_lsst_sersic
  • flux_r_ext_lsst_sersic
  • flux_i_ext_lsst_sersic
  • flux_z_ext_lsst_sersic
  • flux_g_ext_jpcam_sersic
  • flux_z_ext_panstarrs_sersic
  • fluxerr_u_ext_decam_sersic
  • fluxerr_u_ext_lsst_sersic
  • fluxerr_g_ext_lsst_sersic
  • fluxerr_r_ext_lsst_sersic
  • fluxerr_i_ext_lsst_sersic
  • fluxerr_z_ext_lsst_sersic
  • fluxerr_g_ext_jpcam_sersic
  • fluxerr_z_ext_panstarrs_sersic
  • flux_vis_disk_sersic
  • flux_y_disk_sersic
  • flux_j_disk_sersic
  • flux_h_disk_sersic
  • flux_u_ext_decam_disk_sersic
  • flux_g_ext_decam_disk_sersic
  • flux_r_ext_decam_disk_sersic
  • flux_i_ext_decam_disk_sersic
  • flux_z_ext_decam_disk_sersic
  • flux_u_ext_lsst_disk_sersic
  • flux_g_ext_lsst_disk_sersic
  • flux_r_ext_lsst_disk_sersic
  • flux_i_ext_lsst_disk_sersic
  • flux_z_ext_lsst_disk_sersic
  • flux_u_ext_megacam_disk_sersic
  • flux_r_ext_megacam_disk_sersic
  • flux_g_ext_jpcam_disk_sersic
  • flux_i_ext_panstarrs_disk_sersic
  • flux_z_ext_panstarrs_disk_sersic
  • flux_g_ext_hsc_disk_sersic
  • flux_z_ext_hsc_disk_sersic
  • fluxerr_vis_disk_sersic
  • fluxerr_y_disk_sersic
  • fluxerr_j_disk_sersic
  • fluxerr_h_disk_sersic
  • fluxerr_u_ext_decam_disk_sersic
  • fluxerr_g_ext_decam_disk_sersic
  • fluxerr_r_ext_decam_disk_sersic
  • fluxerr_i_ext_decam_disk_sersic
  • fluxerr_z_ext_decam_disk_sersic
  • fluxerr_u_ext_lsst_disk_sersic
  • fluxerr_g_ext_lsst_disk_sersic
  • fluxerr_r_ext_lsst_disk_sersic
  • fluxerr_i_ext_lsst_disk_sersic
  • fluxerr_z_ext_lsst_disk_sersic
  • fluxerr_u_ext_megacam_disk_sersic
  • fluxerr_r_ext_megacam_disk_sersic
  • fluxerr_g_ext_jpcam_disk_sersic
  • fluxerr_i_ext_panstarrs_disk_sersic
  • fluxerr_z_ext_panstarrs_disk_sersic
  • fluxerr_g_ext_hsc_disk_sersic
  • fluxerr_z_ext_hsc_disk_sersic
  • sersic_fract_vis_disk_sersic
  • sersic_fract_y_disk_sersic
  • sersic_fract_j_disk_sersic
  • sersic_fract_h_disk_sersic
  • sersic_fract_u_ext_decam_disk_sersic
  • sersic_fract_g_ext_decam_disk_sersic
  • sersic_fract_r_ext_decam_disk_sersic
  • sersic_fract_i_ext_decam_disk_sersic
  • sersic_fract_z_ext_decam_disk_sersic
  • sersic_fract_u_ext_lsst_disk_sersic
  • sersic_fract_g_ext_lsst_disk_sersic
  • sersic_fract_r_ext_lsst_disk_sersic
  • sersic_fract_i_ext_lsst_disk_sersic
  • sersic_fract_z_ext_lsst_disk_sersic
  • sersic_fract_u_ext_megacam_disk_sersic
  • sersic_fract_r_ext_megacam_disk_sersic
  • sersic_fract_g_ext_jpcam_disk_sersic
  • sersic_fract_i_ext_panstarrs_disk_sersic
  • sersic_fract_z_ext_panstarrs_disk_sersic
  • sersic_fract_g_ext_hsc_disk_sersic
  • sersic_fract_z_ext_hsc_disk_sersic
  • sersic_fract_vis_disk_sersic_err
  • sersic_fract_y_disk_sersic_err
  • sersic_fract_j_disk_sersic_err
  • sersic_fract_h_disk_sersic_err
  • sersic_fract_u_ext_decam_disk_sersic_err
  • sersic_fract_g_ext_decam_disk_sersic_err
  • sersic_fract_r_ext_decam_disk_sersic_err
  • sersic_fract_i_ext_decam_disk_sersic_err
  • sersic_fract_z_ext_decam_disk_sersic_err
  • sersic_fract_u_ext_lsst_disk_sersic_err
  • sersic_fract_g_ext_lsst_disk_sersic_err
  • sersic_fract_r_ext_lsst_disk_sersic_err
  • sersic_fract_i_ext_lsst_disk_sersic_err
  • sersic_fract_z_ext_lsst_disk_sersic_err
  • sersic_fract_u_ext_megacam_disk_sersic_err
  • sersic_fract_r_ext_megacam_disk_sersic_err
  • sersic_fract_g_ext_jpcam_disk_sersic_err
  • sersic_fract_i_ext_panstarrs_disk_sersic_err
  • sersic_fract_z_ext_panstarrs_disk_sersic_err
  • sersic_fract_g_ext_hsc_disk_sersic_err
  • sersic_fract_z_ext_hsc_disk_sersic_err
  • avg_trans_wave_vis
  • avg_trans_wave_y
  • avg_trans_wave_j
  • avg_trans_wave_h
  • avg_trans_wave_u_ext_decam
  • avg_trans_wave_u_ext_lsst
  • avg_trans_wave_g_ext_lsst
  • avg_trans_wave_r_ext_lsst
  • avg_trans_wave_i_ext_lsst
  • avg_trans_wave_z_ext_lsst
  • avg_trans_wave_g_ext_jpcam
  • avg_trans_wave_z_ext_panstarrs
  • blended_prob
  • extended_prob
  • semimajor_axis_err
  • position_angle_err
  • ellipticity_err
  • kron_radius_err

Back to Top

Early Release Observations (Euclid ERO)

The Euclid Early Release Observations (ERO) showcase Euclid's capabilities in advance of its main mission, targeting 17 astronomical objects, from galaxy clusters, nearby galaxies, globular clusters, to star-forming regions observed with both the Visible Camera (VIS) and the Near-Infrared Spectrometer and Photometer (NISP) instruments. A total of 24 hours observing time was allocated in the early months of operation, engaging the scientific community through an early public data release. They report a point spread function (PSF) with a full width at half maximum of 0.''16 in the optical Iₑ-band, and 0.''19 in the near-infrared (NIR) bands Yₑ, Jₑ, and Hₑ. The VIS mean absolute flux calibration is accurate to about 1%, and 10% for NISP due to a limited calibration set; both instruments have considerable color terms for individual sources. The median depth is 25.3 and 23.2 AB mag with a signal-to-noise ratio (S/N) of 10 for galaxies, and 27.1 and 24.5 AB mag at an S/N of 5 for point sources for VIS and NISP, respectively. Euclid's ability to observe diffuse emission is exceptional due to its extended PSF nearly matching a pure diffraction halo, the best ever achieved by a wide-field, high-resolution imaging telescope. Euclid offers unparalleled capabilities for exploring the low-surface brightness (LSB) Universe across all scales, providing high precision within a wide field of view (FoV), and opening a new observational window in the NIR. Median surface-brightness levels of 29.9 and 28.3, AB mag arcsec⁻² are achieved for VIS and NISP, respectively, for detecting a 10'' × 10'' extended feature at the 1σ level.

Astro Data Lab hosts the Euclid ERO source catalogs, organized by the observed field and the instrument used. There are a total of 34 tables in the euclid_ero schema, each described below. Note that unlike other datasets, we did not produce pre-crossmatched tables for this dataset.

Euclid ERO Tables
Table NameDescription
abell2390_nispAbell2390 field; NISP instrument; Y, J, H-bands; ERO-11: A Glimpse Into Euclids Universe Through a Giant Magnifying Lens; H. Atek (Institut d Astrophysique de Paris)
abell2390_visAbell2390 field; VIS instrument; I-band; ERO-11: A Glimpse Into Euclids Universe Through a Giant Magnifying Lens. H. Atek (Institut d Astrophysique de Paris)
abell2764_nispAbell2764 field; NISP instrument; Y, J, H-bands; ERO-11: A Glimpse Into Euclids Universe Through a Giant Magnifying Lens. H. Atek (Institut d Astrophysique de Paris)
abell2764_visAbell2764 field; VIS instrument; I-band; ERO-11: A Glimpse Into Euclids Universe Through a Giant Magnifying Lens. H. Atek (Institut d Astrophysique de Paris)
barnard30_nispBarnard30 field; NISP instrument; Y, J, H-bands; ERO-02: A first glance at free-floating baby Jupiters with Euclid. E. Martin (Instituto de Astrofisica de Canarias)
barnard30_visBarnard30 field; VIS instrument; I-band; ERO-02: A first glance at free-floating baby Jupiters with Euclid. E. Martin (Instituto de Astrofisica de Canarias)
dorado_nispDorardo field; NISP instrument; Y, J, H-bands; ERO-09: The Fornax galaxy cluster seen with Euclid. A. Lancon (Observatoire de Strasbourg)
dorado_visDorardo field; VIS instrument; I-band; ERO-09: The Fornax galaxy cluster seen with Euclid. A. Lancon (Observatoire de Strasbourg)
fornax_nispFornax field; NISP instrument; Y, J, H-bands; ERO-09: The Fornax galaxy cluster seen with Euclid. A. Lancon (Observatoire de Strasbourg)
fornax_visFornax field; VIS instrument; I-band; ERO-09: The Fornax galaxy cluster seen with Euclid. A. Lancon (Observatoire de Strasbourg)
holmbergii_nispHolmbergII field; NISP instrument; Y, J, H-bands; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
holmbergii_visHolmbergII field; VIS instrument; I-band; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
horsehead_nispHorsehead field; NISP instrument; Y, J, H-bands; ERO-02: A first glance at free-floating baby Jupiters with Euclid. E. Martin (Instituto de Astrofisica de Canarias)
horsehead_visHorsehead field; VIS instrument; I-band; ERO-02: A first glance at free-floating baby Jupiters with Euclid. E. Martin (Instituto de Astrofisica de Canarias)
ic10_nispIC10 field; NISP instrument; Y, J, H-bands; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
ic10_visIC10 field; VIS instrument; I-band; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
ic342_nispIC342 field; NISP instrument; Y, J, H-bands; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
ic342_visIC342 field; VIS instrument; I-band; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
messier78_nispMessier78 field; NISP instrument; Y, J, H-bands; ERO-02: A first glance at free-floating baby Jupiters with Euclid. E. Martin (Instituto de Astrofisica de Canarias)
messier78_visMessier78 field; VIS instrument; I-band; ERO-02: A first glance at free-floating baby Jupiters with Euclid. E. Martin (Instituto de Astrofisica de Canarias)
ngc2403_nispNGC2403 field; NISP instrument; Y, J, H-bands; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
ngc2403_visNGC2403 field; VIS instrument; I-band; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
ngc6254_nispNGC6254 field; NISP instrument; Y, J, H-bands; ERO-03: Euclid view of Milky Way globular clusters. D. Massari (INAF OAS, Bologna)
ngc6254_visNGC6254 field; VIS instrument; I-band; ERO-03: Euclid view of Milky Way globular clusters. D. Massari (INAF OAS, Bologna)
ngc6397_nispNGC6397 field; NISP instrument; Y, J, H-bands; ERO-03: Euclid view of Milky Way globular clusters. D. Massari (INAF OAS, Bologna)
ngc6397_visNGC6397 field; VIS instrument; I-band; ERO-03: Euclid view of Milky Way globular clusters. D. Massari (INAF OAS, Bologna)
ngc6744_nispNGC6744 field; NISP instrument; Y, J, H-bands; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
ngc6744_visNGC6744 field; VIS instrument; I-band; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
ngc6822_nispNGC6822 field; NISP instrument; Y, J, H-bands; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
ngc6822_visNGC6822 field; VIS instrument; I-band; ERO-08: A Euclid showcase of nearby galaxies. L. Hunt (INAF-AO Arcetri, Firenze)
perseus_nispPerseus field; NISP instrument; Y, J, H-bands; ERO-10: Cluster of Galaxies. J.-C. Cuillandre (CEA, AIM, Universite Paris-Saclay)
perseus_visPerseus field; VIS instrument; I-band; ERO-10: Cluster of Galaxies. J.-C. Cuillandre (CEA, AIM, Universite Paris-Saclay)
taurus_nispTaurus field; NISP instrument; Y, J, H-bands; ERO-02: A first glance at free-floating baby Jupiters with Euclid. E. Martin (Instituto de Astrofisica de Canarias)
taurus_visTaurus field; VIS instrument; I-band; ERO-02: A first glance at free-floating baby Jupiters with Euclid.

Back to Top

Data Access

The Euclid data are accessible by a variety of means:

Data Lab Table Access Protocol (TAP) service

TAP provides a convenient access layer to the DECaPS catalog database. TAP-aware clients (such as TOPCAT) can point to https://datalab.noirlab.edu/tap, select the euclid_q1 database, and see the database tables and descriptions. You can also view the Euclid tables and descriptions in the Data Lab table browser.

Data Lab Query Client

The Query Client is available as part of the Data Lab software distribution. The Query Client provides a Python API to Data Lab database services. These services include anonymous and authenticated access through synchronous or asynchronous queries of the catalog made directly to the database. Additional Data Lab services for registered users include personal database storage and storage through the Data Lab VOSpace.

The Query Client can be called from a Jupyter Notebook on the Data Lab Notebook server. Example notebooks are provided to users upon creation of their user account (register here), and are also available to browse on GitHub at https://github.com/astro-datalab/notebooks-latest.

Back to Top

NSF NOIRLab Logo Horizontal
AboutPublicationsAcknowledgmentsDisclaimersPrivacy Policy
 astrodatalab › Github ›
Version: 0.15.0
 
logo
 
 Menu

Data Explorer
Data Releases
Docs
News

 Support ›
 GitHub ›

AboutPublicationsAcknowledgmentsDisclaimersPrivacy Policy

The Astro Data Lab is part of the U.S. National Science Foundation Community Science and Data Center (CSDC) at NSF NOIRLab, the national center for ground-based nighttime astronomy in the United States.

 Data Explorer  Data Releases  Docs  News 
 GitHub › Support ›